By Jeff Williams, PhD and Nathan Kenney
Introduction
The recent report from the Centers for Disease Control and Prevention (CDC) on “Microbes in Pool Filter Backwash” (May 17, 2013, Morbidity and Mortality Reports [MMWR], 62 (#19): 385-388) certainly stirred up the mass media airwaves and put something of a cloud over public perceptions of swimming pool safety, just as this year’s season was entering full swing. Reminding bathers about personal hygiene as a part of public pool use, in particular, is always a good thing, but this report’s results readily became sensationalized by content-hungry news channels. A rather unsurprising set of findings—at least to microbiologists—on a limited range of pool filter samples got converted from what should have been a news story in the ‘dog bites man’ category, into lurid coverage in the ‘poop in pools everywhere’ style. It probably ended up doing little to focus public attention on the behavioral changes that CDC strives so hard to bring about.
That’s unfortunate, because making such a beneficial and wholesome activity as swimming even more attractive and encouraging participation is critical to national efforts to get Americans off the couch and doing something healthy yet delightful. Raising fears about risks of what have come to be called recreational water infections (RWI) can be a setback to those efforts. That is what makes it important to put the MMWR data in a broader perspective, taking into account some of the nuances of the technology deployed in the report, and that is what we offer here. Nothing in our comments, however, should be taken as diminishing the growing and proper concerns about the steady increase in swimming pool RWIs that CDC has highlighted in recent years.
Interpreting high-tech findings and assessing the risk
CDC researchers collected 161 backwashed pool filter samples from Atlanta-area pools and tested them for biological contaminants using DNA probes. In this way, filtered particulates ended up being highly concentrated in a small amount of backwash water. They then used DNA fingerprinting to detect whatever was trapped on the filter medium with an extraordinary sensitivity. Many of the filters, doing their job properly, were found to have trapped bacteria to the extent that more than half of the samples showed evidence of the presence of E. coli, commonly used as an indicator of fecal contamination. About the same proportion contained fingerprints of Pseudomonas aeruginosa, a microbe that can be human-associated, sometimes causing disease, but which can occupy and multiply in a wide range of environmental niches.
Their presence may instead be an indicator of the presence of human bodies in the pool. These kinds of results do not even assure us that intact germs were present, since remnants from the beneficial effects of sanitizers on microbes could give rise to positive signals in DNA tests. On the other hand, intact or not, alive or not, the fingerprints are undeniable, and in the long run, accumulation of this kind of evidence may end up proving useful in risk assessment. It certainly provides a new approach to characterization of an important public health issue associated with recreational water use.
Common pool filter types
Chlorine: upside/downside
Significant, but almost lost in the high visibility of the pool- poop story, is the detection in some samples of parasite cyst fingerprints—significant because, in this instance, even the best chlorine sanitizing system will not inactivate Cryptosporidium oocysts. They are most likely to have a human feces origin in pool water and almost certainly would still be alive and infectious in the filter. Filtering them out and regularly backwashing them into the septic outflow is another component of ongoing, effective pool management. But here we encounter a higher risk to bathers and much less certainty about the capacity of the filter medium to capture and eventually remove oocysts. Close enough to to take its presence in backwash samples, even at a low rate (two percent), as a serious indicator of potential problems.
Clearer is safer
Which brings us to the final piece of the framework for our perspective on the CDC report: water clarity as a contributor to pool water safety, regardless of the method of disinfection being deployed. Turbidity is the enemy of effective pool safety manage- ment and efficient filtration is the way to counter it. Turbidity interferes with UV, consumes disinfectants (it’s a ‘demand’ for halogen, meaning less is available for sanitation) and contributes to the risk of pool drowning accidents by obscuring the view of bathers who get into trouble and sink out of sight. Filter back- washes should contain evidence for what the medium is taking out (just as the CDC researchers found). Helping that process by flocculating suspended particles is a worthy goal and can be achieved as a part of regular pool management. There are plenty of products available to make that happen. An illustration of what can be accomplished with a natural product formulation specifi- cally aimed at improving filtration efficiency, is shown in Figures 1 and 2. Cryptosporidium oocysts, enmeshed in large flocs created by pool water treatment with this biopolymer formulation (Figure 1), are now much more readily trapped on the filter and less likely to remain in the recirculating body of water and cause RWI out- breaks. Particles as small as E.coli can be aggregated by this kind of treatment into clumps (Figure 2) that end up being retained by, in this case, a flat filter membrane with five-micron pores that would normally allow these bacteria to pass through.
Figure 1 is a microscopic image of a flocculum generated with treatment of Cryptosporidium suspended in pool water. The green fluorescent areas are oocysts, enmeshed in a floc made up of two interacting biopolymers. The flocs are large enough to be retained by a coarse sand filter. Figure 2 is a microscopic image of a filter membrane after filtering a suspension of E.coli in treated pool water . The purple-stained clumps of flocced bacteria are retained on the membrane, whereas untreated bacteria normally pass straight through the five-micron pores.
Figures 1. (left) and 2 (right).
Cryptosporidium oocysts and E. Coli
Conclusion
Encouraging a multi-pronged approach to pool sanitation, with proper attention to disinfection, clarification and filtration, as well as emphasizing the role of personal hygiene measures for all bathers, is likely to lead to more widely enjoyed and enjoyable recreational water experiences. Properly implemented, these kinds of pool management practices do work. That would be a nice message to put out during the summer swimming season!
About the authors
Bather load bacterial sloughing explanation
Whenever a person swims in a pool, they will drop bacteria and viruses from their skin and hair (not to mention any incontinent accidents) and the vast majority of these microbes will be killed by the chlorine in the pool. The bacteria that live on the skin of healthy people are largely not harmful unless the person already has lowered immune defenses. People who fall into the category of having lowered immune defenses are typically very young children, seniors, pregnant women, AIDS patients and those on immunosuppressant medication.
It is not at all unusual that DNA probes of pool filters found bacteria as common as P. aeruginosa or Escherichia coli (E. coli), given that P. aeruginosa lives on most surfaces in civilization and E. coli is present in microscopic amounts on everything someone touches after going to the bathroom. Also, if 75 percent of samples could contain either E. coli or P. aeruginosa and there wasn’t a huge outbreak in the Atlanta area as a result, it suggests that these bacteria are truly not the main sources of swimming-related infections.
It should be made clear that there is a small sub-group of E. coli responsible for severe illness with vomiting and diarrhea called E. coli 0157:H7. These bacteria make people sick, and if they are found in a pool filter, it would indicate that someone was sick with diarrhea and vomiting symptoms when they went swimming. Almost any other
E. coli contamination would simply indicate that swimmers were not thoroughly cleaning themselves before using the pool. While this is unsanitary, it is not a cause for alarm if the pool is properly chlorinated and maintained.
Knowing the difference between normal E. coli and E. coli 0157:H7, it should be considered that the CDC study did not find any E. coli 0157:H7 with the DNA probe, but did find other non-specific E. coli. This shows that contamination in most pool filters was the result of dirty swimmers and not the result of severely sick people contaminating the entire pool, making it dangerous for all other swimmers. Luckily, in the case of either type of E. coli, chlorine will kill whatever is floating in the pool as long as the chlorine levels are kept appropriately high. Proper chlorine use is vital to keeping pools safely clean of the infectious and dangerous E. coli 0157:H7, as well as many other potential microbial contaminants.