By D. Duane Dunk
Wouldn’t it be great to know what’s coming in the market and how to adjust your strategy to be prepared? You can have a pretty good idea if you know where to look for signals. The most successful companies provide goods or services meeting genuine needs. In order to more competitively respond to need-driven market opportunities, companies invest in R&D, and resulting discoveries with economic promise lead to filing of patent applications. If one monitors global patent filings across a range of competing technologies, patterns can be seen as to where the industry as a whole is placing its bets, and where interest is cooling off. On March 16, 2013 the US will switch to a ‘first to file’ patent system, like most of the rest of the world, and will motivate inventors to file as quickly as possible. Their applications will then be published 18 months later.
It can easily take much longer than 18 months to refine inventions, conduct market research, productize novel technology, set up distribution and ramp production capacity for volume commercialization. This creates an early warning opportunity for the savvy monitors of patent filings. It’s like Doppler weather radar for technology innovation to see what’s coming over the horizon across the competitive landscape.
So where does one begin? Try the following experiment the next time you attend a water treatment industry event. Randomly ask people to name the first five microbiological water purification technologies that come to mind. You will probably get mainstream answers like reverse osmosis, UV light, chlorine, ozone and distillation.
Some respondents might mention iodine or bromine, as they have been in use for decades; however, taste, odor and other issues of handling and storage have limited their usage to mostly niche applications and may limit the number of such responses. Here are the historical timelines of several mainstream microbiological purification technologies:
Chlorine
1854: First used in drinking water treatment in Europe
1908: First drinking water use in the US
UV light
1877-1887: Discovery that sunlight kills bacteria in water
1910-1916: First use in drinking water treatment
2000: Discovery that UV can kill Cryptosporidium
1840: Chemical substance discovered
1865: Chemical identity established
1857: Siemens designs cylindrical dielectric ozone generator
1886: First experimental use
1932: Used in dentistry
1930s: Used in pools and spas
1950s: Widespread municipal use in Europe
1970s: Bottled water use
1989: First municipal ozonation in the US
2001: US FDA approval as a food additive
Reverse osmosis
1949: UCLA investigates RO for desalination
1957: Synthetic membrane from cellulose acetate developed
1963: Industrial scale production
1965: World’s first commercial RO plant
1970: First commercialization
2006: $280 million/year in RO product sales
Ozone and distillation have the oldest patent filing history, which boosts their numbers. Ozone, however, continues to have significant patent filing activity in the most recent decade, not surprisingly followed by UV and RO in the same time period. It is also interesting to see the low level of investment being made in chloramine technology, though it dates back into the 1930s. From this table alone, one should consider taking a much closer look at the nature of ozone work being done. Now let’s take a look at some newer purification technologies that are not yet as widely used (see Figure 2).
Interpretation
Though newer by a decade, carbon nanotube patent applications have significantly exceeded those for hollow-fiber membranes, and carbon nanotube patent filings in the most
- Ozone
- UV
- RO
- Carbon nanotubes
- Chlorine
Escalation of patent filings in the 1960s and 1970s was need driven. In US EPA’s The History of Drinking Water Treatment, published in February 2000, we find: “By the late 1960s it became apparent that the aesthetic problems, pathogens, and chemicals identified by the Public Health Service were not the only drinking water quality concerns. Industrial and agricultural advances and the creation of new man-made chemicals also had negative impacts on the environment and public health. Many of these new chemicals were finding their way into water supplies through factory discharges, street and farm field runoff, and leaking underground storage and disposal tanks.” And in 1969, “over half of the treatment facilities surveyed had major deficiencies involving disinfection, clarification, or pressure in the distribution system, or combinations of these deficiencies.”
Also, remember that costs tend to fall rapidly as any new technologies roll out into full commercialization. Keep the ‘experience curve’ in mind (also known as Henderson’s Law), developed by Bruce Henderson, Founder of the Boston Consulting Group. As he put it: “Costs characteristically decline by 20-30 percent in real terms each time Newer purification technologies are tracking along the same pattern as primary, mainstream technologies. Hollow- fiber membranes and carbon nanotube purification technologies should continue to be monitored for those anticipating what is to come. In the most recent 10-year period reviewed, the top five rankings of patent filings are: accumulated experience doubles. This means that when inflation is factored out, costs should always decline. The decline is fast if growth is fast and slow if growth is slow.” In other words, do not prematurely dismiss or ignore emerging technologies as too expensive. Per Henderson’s Law, costs will come down.
When assessing the potential acceptance of newer technologies, one may certainly ask, “What does this mean to me?” For manufacturers, these signals can guide R&D investment and competitive bench marking against emerging technologies. Dealers astutely studying predictive signals may be rewarded with early discovery of new opportunities, as well as reduced risk of being caught by surprise. Transitions in product life- cycle stages (see Figure 3) may be anticipated, enabling timely promotional efforts and shifts in carried inventory. New areas of technical study can be discovered to prepare one as a subject matter expert for consulting and better service capabilities. Distribution rights might be secured ahead of the competition, perhaps with protected territories.
Summary
In market, need-driven economies, companies invest to develop innovative advantages, and those monitoring patent filings can anticipate their competition. Significant demand for drinking water purification will continue not only abroad, but increasingly in the US, in the years ahead. Evidence points to the fact that established, mainstream technologies (UV, RO, ozone, distillation and chlorine) will be joined by other go-to technology solutions, such as carbon nanotube filtration and hollow-fiber ultrafiltration membranes. Keep monitoring patent filings to follow this progression and watch for emerging technologies in the months and years ahead.
About the author
D. Duane Dunk holds an MBA and CPA license and specializes as a strategic planner and business development manager of breakthrough technologies. He is a long-time practitioner of competitive intelligence with 20 years of experience in water treatment, moving companies from the R&D stage to successful product introduction. Dunk can be reached at [email protected].